Meeting Banner
Abstract #1755

Late feature fusion and GAN-based augmentation for generalizable cardiac MRI segmentation

Yasmina Al Khalil1, Sina Amirrajab1, Cristian Lorenz2, Jürgen Weese2, Josien Pluim1, and Marcel Breeuwer1,3
1Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands, 2Philips Research Laboratories, Hamburg, Germany, 3Philips Healthcare, MR R&D - Clinical Science, Best, Netherlands

Synopsis

While recent deep-learning-based approaches in automatic cardiac magnetic resonance image segmentation have shown great promise to alleviate the need for manual segmentation, most are not applicable to realistic clinical scenarios. This is largely due to training on mainly homogeneous datasets, without variation in acquisition parameters and pathology. In this work, we develop a model applicable in multi-center, multi-disease, and multi-view settings, where we combine heart region detection, augmentation through synthesis and multi-fusion segmentation to address various aspects of segmenting heterogeneous cardiac data. Our experiments demonstrate competitive results in both short-axis and long-axis MR images, without physically acquiring more training data.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords