Evaluation of accelerated magnetic resonance imaging (MRI) reconstruction methods is imperfect due to the discordance between quantitative image quality metrics (IQMs) and radiologist-perceived image quality. Self-supervised learning (SSL) is a deep learning (DL) method that has become a popular pre-training tool due to its ability to capture generalizable and domain-specific feature representations of the underlying data without the need for labels. In this study, we derive a data-driven self-supervised feature distance (SSFD) IQM to assess MR image reconstruction quality. We demonstrate that SSFD is more highly correlated to three radiologist’s perceived image quality on DL-based sparse reconstructions than conventional IQMs.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords