Individual sensitivity to pain is both a precursor and a symptom of many clinical pain conditions. A pain predictive model would have potential applications in objectively characterizing pain in acute and chronic pain individuals. Here, we developed a cortical thickness-based predictive model of pain sensitivity using a machine learning approach and multi-centre T1-weighted MRI and quantitative pain threshold data. We found that our model significantly predicts pain sensitivity, that was measured through heat, cold and mechanical stimuli. Furthermore, the predictions were exclusively driven by cortical thickness and not confounded by variables of demographic and psychological value.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords