The basal ganglia, thalamus and brainstem are affected by movement disorders and contain key targets for functional neurosurgery. Targeting however is based on indirect coordinates originally derived from pneumoencephalograms! 3D Fast Gray Matter Acquisition T1 Inversion Recovery (FGATIR) can directly visualize potential targeted structures (e.g. dentatorubrothalamic tract), but is signal-starved in clinically-feasible acquisitions. We developed a convolutional neural network to improve FGATIR quality. Expert rater assessment suggested this CNN improved contrast resolution of individual structures and overall clinical image quality of 1-average data to the level of 4-averages. This could further enable investigations of functional neurosurgery for movement disorders.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords