The standing wave artefact affects SNR and contrast of the images in Ultra-high field (UHF) functional magnetic resonance imaging (fMRI). One way to mitigate this effect is to use parallel transmission (pTx). In this study, we evaluate the benefits of pTx for studies that investigate large-scale brain networks involved in motor control. We show that, compared to the standard circularly polarized (CP) mode, activation patterns in the posterior lobule of the cerebellum, produced by a coordinated finger flexion-extension task in both hands, are better captured using subject-specific pTx pulses.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords