We propose the use of magnetic resonance fingerprinting (MRF), applied using a spoiled gradient echo sequence, to quantify cerebral blood volume ($$$\nu_b$$$) and inter-vascular water exchange (1/$$$\tau_b$$$), without the need for contrast agents. Through a simulation study we optimise a simulated acquisition protocol and test the sensitivity of the measurement, and its accuracy in the presence of variations in blood T1, tissue T1, and B1. We demonstrate that voxel-wise simultaneous quantification of $$$\nu_b ,\tau_b , T_{1,b}, T_{1,e}$$$ and $$$B_1^+$$$ is likely feasible with an optimised acquisition.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords