Meeting Banner
Abstract #2592

Using 3D realistic blood vessel structures and machine learning for MR vascular Fingerprinting

Aurélien Delphin1, Fabien Boux1,2, Clément Brossard1,3, Jan M Warnking1, Benjamin Lemasson1,3, Emmanuel Luc Barbier1, and Thomas Christen1
1Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, 38000, Grenoble, France, 2Univ. Grenoble Alpes, Inria, CNRS, G-INP, 38000, Grenoble, France, 3MoGlimaging Network, HTE Program of the French Cancer Plan, Toulouse, France

Synopsis

MR vascular fingerprinting aims at mapping cerebral vascular properties such as blood volume and blood oxygenation. We propose to improve the technique by generating dictionaries based on 3D vascular networks segmented from whole brain high-resolution (3 µm isotropic) microscopy datasets. In order to compensate for the limited number of available data and long computing times, we used a machine-learning reconstruction process to generalize our results and tested our approach in healthy, stroke and tumor animal models. Our results show high quality maps with expected contrast and baseline values in healthy animals as well as expected trends in pathological tissues.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords