PCA denoising based on the Marchenko-Pastur (MP) distribution has become the state-of-the-art procedure to suppress thermal noise in multi-dimensional MRI. Here we developed a Hybrid-PCA strategy that combines a-priori noise variance estimation and the random matrix theory for PCA eigenvalue classification, to overcome shortcomings of contemporary MP-PCA denoising. Our results show that, while the MP-PCA denoising fails to classify the noise PCA components in data with spatially correlated noise, the Hybrid-PCA algorithm maintains its denoising performance. The Hybrid-PCA denoising can thus be a useful procedure for data corrupted by spatially correlated noise, as typically arises in vendor reconstructed data.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords