Meeting Banner
Abstract #2807

Evaluation of the REFILL dynamic distortion correction method for fMRI

Simon Daniel Robinson1,2,3, Beata Bachrata3, Korbinian Eckstein3, Barbara Dymerska4, Saskia Bollmann2, Steffen Bollmann5, Shota Hodono2, Martijn Cloos2, Monique Tourell2, Jin Jin6, Kieran O'Brien6, David Reutens2, Siegfried Trattnig3, Christian Enzinger1, and Markus Barth5
1Department of Neurology, Medical University of Graz, Graz, Austria, 2Centre for Advanced Imaging, University of Queensland, Brisbane, Australia, 3Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria, 4UCL Queen Square Institute of Neurology, University College London, London, United Kingdom, 5School of Electrical Engineering and Information Technology, University of Queensland, Brisbane, Australia, 6Siemens Healthineers, Brisbane, Australia


We evaluate the performance of a recently-proposed dynamic distortion correction (DDC) method for fMRI at 7T, with a task which generates field fluctuations. The Reverse-Encoded First Image and Low resoLution reference scan (REFILL) method generates fieldmaps from the phase of standard, single-echo EPI from fMRI time series, using coil sensitivity information from a fast reference scan and removing other, non-B0-related contributions to the phase, which are calculated from a readout-reverse EPI volume. In contrast to conventional static distortion correction (SDC) with a GE-based fieldmap, REFILL captured dynamic changes to the field, leading to an accurate correction and increased tSNR.

This abstract and the presentation materials are available to members only; a login is required.

Join Here