Meeting Banner
Abstract #2918

Mapping of weak current-induced magnetic fields in a 3D volume of the human brain at high resolution: 2D vs. Simultaneous multi slice

Cihan Göksu1,2, Klaus Scheffler2,3, Fróði Gregersen1,4,5, Hasan Hüseyin Eroğlu1,4, Rahel Heule2,3, Hartwig R. Siebner1,6,7, Lars G. Hanson1,4, and Axel Thielscher1,4
1Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Amager and Hvidovre, Denmark, 2High-Field Magnetic Resonance Center, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany, 3Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany, 4Section for Magnetic Resonance, DTU Health Tech, Technical University of Denmark, Kgs Lyngby, Denmark, 5Sino-Danish Center for Education and Research, Aarhus, Denmark, 6Department of Neurology, Copenhagen University Hospital, Bispebjerg, Denmark, 7Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark


Exact knowledge of current distributions induced by transcranial electrical stimulation (TES) in the brain is important for effective clinical use of TES. MRCDI uses MRI to measure the TES-induced magnetic fields for estimating the underlying current flow distributions. The estimation methods can benefit from highly sensitive volume MRCDI measurements at a high spatial resolution. Here, we advanced our 2D spoiled gradient-echo-based MRCDI method for a sparse volume acquisition by using simultaneous-multi-slice (SMS) acquisition. Our SMS strategy demonstrated 25% improvement in noise floors against 2D. We test the performance of our methods by phantom and human in-vivo experiments using cable-loop currents.

This abstract and the presentation materials are available to members only; a login is required.

Join Here