Meeting Banner
Abstract #2980

Focused ultrasound-modulated left dorsolateral prefrontal cortex of the non-human primate assessed by functional MRI

Yu Xu1, Tingting He2, Haiming Wang2, Xiao Yu1, Boyi Qu2, Ssu-Ju Li3, and Hsin-Yi Lai4
1Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China, 2College of Biomedical Engineering & Instrument Science, Zhejiang University. Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, Hangzhou, China, 3Department of Biomedical Engineering, National Yang Ming University, No. 155, Section 2, Linong Street, Taipei, 112, Taiwan, ROC. Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No. 1001 Ta-Hsueh Rd., Hsinchu, 300, Taiwan, ROC, Taiwan, China, 4College of Biomedical Engineering & Instrument Science, Zhejiang University. Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University. Department of Neurology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China

Synopsis

Focused ultrasound (FUS) has shown its unique advantages in the field of non-invasive neuromodulation. The dorsolateral prefrontal cortex (DLPFC) is a key node in brain networks involved in cognitive, emotional and sensory processing. Here we evaluated the immediate and latency effects of DLPFC-FUS by functional magnetic resonance imaging (fMRI). The results showed that DLPFC-FUS induced a 3% increase in positive BOLD signal, and decreased FCs in bilateral primary and secondary visual cortices, supported by visual stimuli-evoked BOLD change. Moreover, FCs significantly decreased in left thalamus at 5-min post-FUS and in bilateral anterior cingulate cortex (ACC) at 30-min post-FUS. These results may help to elucidate the effect of FUS neuromodulation.

This abstract and the presentation materials are available to members only; a login is required.

Join Here