In this study, a combined deep learning and radiomics (DLR) approach using six different network architectures was tested and compared for the prediction of high Ki-67 expressions in patients with hepatocellular carcinoma (HCC). The model was based primarily on data from MRI and tomoelastography, a multifrequency MR elastography technique. Xception delivered the best performance and recognized seven prominent features among which four were obtained from tomoelastography. Our findings demonstrated that biomechanical properties, especially viscosity and the fluid behavior of the tumor, are crucial imaging features that are important for imaging-based cancer diagnostics.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords