Meeting Banner
Abstract #3302

An efficient deep learning framework for consistent superficial white matter tractography parcellation

Tengfei Xue1,2, Fan Zhang1, Chaoyi Zhang2, Yuqian Chen1,2, Yang Song3, Nikos Makris1, Yogesh Rathi1, Weidong Cai2, and Lauren Jean O’Donnell1
1Harvard Medical School, Boston, MA, United States, 2The University of Sydney, Sydney, Australia, 3University of New South Wales, Sydney, Australia

Synopsis

We propose a deep-learning-based framework, Superficial White Matter Analysis (SupWMA), which performs an efficient and consistent parcellation of 198 SWM clusters from whole-brain tractography. A point-cloud-based network is developed for our SWM parcellation task, and supervised contrastive learning enables more discriminative representations between plausible streamlines and outliers. SupWMA obtains highly consistent and accurate SWM parcellation results on a large tractography dataset with ground truth labels and on three independently acquired testing datasets from individuals across ages and health conditions.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords