We have designed a novel QSM algorithm that addresses some of the limitations of existing techniques that combine the background removal and dipole inversion steps in a single step. We propose that the solution to the direct inversion problem can be aided by an iterative k-space algorithm and the inclusion of a priori information that represents feature-based and voxel-fidelity-based constraints. The considered approach, when compared with other techniques, resulted in a more accurate depiction of the susceptibility in high susceptibility deep gray matter (dGM) structures without sacrificing performance in regions like the cortex of the brain.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords