A total of 27 patients receiving both spinal CT and MR for evaluation of back pain were identified for analysis. MR images and CT image were co-registered first, and the CT was used as ground truth for training a deep learning algorithm using MR images to generate synthetic CT. In this study, we implemented cycleGAN to generate these synthetic CT images from their corresponding MR slices. Five-fold cross validation was used to evaluate the performance of the trained model. Compared to the original images, the Mean Average Error was 27.63±11.51, and the Peak Signal-to Noise Ratio was 19.44±5.72.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords