This work examines optimized parallel combinations of deep networks and conventional regularized reconstruction for improved quality of MR image reconstructions from undersampled k-space data. Features learned by deep networks and typical model-based iterative algorithms (e.g., sparsity-penalized reconstruction) could complement each other for effective reconstructions. We observe that combining the image features from multiple approaches in a parallel fashion with appropriate learned weights leads to more effective image representations that are not captured by either strictly supervised or (unsupervised) conventional iterative methods.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords