Synthetic contrasts are commonly derived from parameter maps via Bloch simulation.Typically, model imperfections, in particular partial volume effects, cause artifacts in those images. Recently, it has been proposed to overcome this problem by mapping directly from MR-Fingerprinting data to synthetic contrasts with neural networks. Those methods, however, face the MRF-typical undersampling artifacts, as well as the computational burden of hundreds of input images. We propose to first reconstruct images in a low-rank sub-space, which maintains the correct partial volume contrast, but allows for removal of undersampling artifacts, and to map from this space to synthetic contrasts with a neural network.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords