Meeting Banner
Abstract #3875

White Matter Tract Microstructure Influences Semantic Memory & Emotion Perception Performance in the HCP Dataset

Leo R. Zekelman1,2, Fan Zhang3, Nikos Makris4,5, Jianzhong He3, Yuqian Chen3,6, Tengfei Xue3,6, Daniela Liera7, Daniel L. Drane8,9,10, Yogesh Rathi3,11, Alexandra J. Golby1,3, and Lauren J. O'Donnell3
1Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, United States, 2Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, United States, 3Department of Radiology, Brigham and Women’s Hospital, Boston, MA, United States, 4Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States, 5Department of Psychiatry and Neurology, A. Martinos Center for Biomedical Imaging, Boston, MA, United States, 6School of Computer Science, University of Sydney, Sydney, Australia, 7Harvard College, Cambridge, MA, United States, 8Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States, 9Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States, 10Department of Neurology, University of Washington School of Medicine, Seattle, WA, United States, 11Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States

Synopsis

Using dMRI and behavioral data from 809 participants in the Human Connectome Project, we examined how the microstructure of the white matter (WM) association tracts influences performance on assessments of semantic memory and emotion perception. WM tracts were extracted and measured using an automated WM tract atlas. We found the microstructure of left hemisphere tracts influenced semantic memory, while that of right hemisphere tracts influenced emotion perception performance. Furthermore, the microstructure of the left arcuate fasciculus influenced performance on both assessments. Our findings suggest WM tract microstructure relates to the opposing hemispheric dominance of language and theory of mind processing.

This abstract and the presentation materials are available to members only; a login is required.

Join Here