Resolving a time series of T2-weighted images from a fast-spin-echo (FSE) sequence with traditional techniques requires long acquisitions, but T2-shuffling enables clinically feasible scan times by combining subspace models, which reduce degrees-of-freedom, with random spatial and temporal undersampling. Supervised machine learning achieves impressive reconstruction, but lack of labeled training data preclude its use in reconstructing signal dynamics. Recent zero-shot-self-supervised-learning (ZSSS) techniques enable high quality structural MRI reconstruction without training data. In this work, we combine ZSSS with the subspace model to further accelerate 2D T2-shuffling acquisitions. Our ZSSS-subspace models show significant reconstruction improvement in comparison to standard T2-shuffling in simulation.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords