Meeting Banner
Abstract #4342

Self-supervised learning for multi-center MRI harmonization without traveling phantoms: application for cervical cancer classification

Xiao Chang1, Xin Cai1, Yibo Dan2, Yang Song2, Qing Lu3, Guang Yang2, and Shengdong Nie1
1the Institute of Medical Imaging Engineering, University of Shanghai for Science and Technology, Shanghai, China, 2the Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, Shanghai, China, 3the Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Synopsis

We proposed a self-supervised harmonization to achieve the generality and robustness of diagnostic models in multi-center MRI studies. By mapping the style of images from one center to another center, the harmonization without traveling phantoms was formalized as an unpaired image-to-image translation problem between two domains. The proposed method was demonstrated with pelvic MRI images from two different systems against two state-of-the-art deep-leaning (DL) based methods and one conventional method. The proposed method yields superior generality of diagnostic models by largely decreasing the difference in radiomics features and great image fidelity as quantified by mean structure similarity index measure (MSSIM).

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords