Meeting Banner
Abstract #4492

Deep Learning-enabled Prostate Segmentation: Large Cohort Evaluation with Inter-Reader Variability Analysis

Yongkai Liu1, Miao Qi1,2, Chuthaporn Surawech1,3, Haoxin Zheng1, Dan Nguyen4, Guang Yang5, Steven Raman1, and Kyunghyun Sung1
1Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA, United States, 2Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China, 3Department of Radiology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand, 4Department of Radiation Oncology, UT Southwestern Medical Center, Los Angeles, CA, United States, 5National Heart and Lung Institute, Imperial College London, London, United Kingdom

Synopsis

Whole-prostate gland (WPG) segmentation plays a significant role in prostate volume measurement, treatment, and biopsy planning. This study evaluated a previously developed automatic WPG segmentation, deep attentive neural network (DANN), on a large, continuous patient cohort to test its feasibility in a clinical setting.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords