Symbolic data regression provides a systematic way to bring together heterogenous data from imaging and non-imaging sources in the form of histograms, intervals and scalar-valued observations. Classic multiple linear regression is adapted to mixed symbolic features and applied to data from diffusion spectrum images and clinical measurements for stroke recovery prediction. By utilizing the implicit variability within observations and natural grouping within features, the amount of information available to the modelling process is increased. This provides increased stability for model parameters over traditional regression and is especially beneficial with low sample sizes.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords