Meeting Banner
Abstract #4954

Structural covariance of diffusion metrics in mild COVID19: Spatially coherent effect on fractional anisotropy but not free water.

Nick Teller1, Jordan A. Chad1,2, Eugenie Roudaia1, Ali Hashemi3, Haddas Grosbein1, Asaf Gilboa1,2, Maged Goubran2,4, Ivy Cheng2,4, Sandra E. Black2,4, Robert Fowler2,4, Chris Heyn2,4, Fuqiang Gao4, Mario Masellis2,4, Jennifer Rabin2,4, Xiang Ji4, Aravinthan Jegatheesan2,4, Benjamin Lam2,4, Allison B. Sekuler1,2,3, Bradley J. MacIntosh2,4, Simon J. Graham2,4, and J. Jean Chen1,2
1Rotman Research Institute, North York, ON, Canada, 2University of Toronto, Toronto, ON, Canada, 3Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada, 4Sunnybrook Research Institute, Toronto, ON, Canada

Synopsis

The impact of COVID19 on the brain’s microstructural integrity remains unclear. In this study, we examine self-isolated COVID19 patients and controls using diffusion-tensor and free-water imaging, based on single- and multi-shell acquisitions, respectively. We identify several differences in spatial covariance among patients in fractional anisotropy (in cingulate-frontal and temporal-parietal regions), but not free water fraction. Our results indicate COVID19’s implications in long-term, measurable brain deficits.

This abstract and the presentation materials are available to members only; a login is required.

Join Here