Meeting Banner
Abstract #0281

In-vivo detection of neuronal current using spin-lock oscillatory excitation at 7T

Yuhui Chai1, Guoqiang Bi2, Liping Wang3, Fuqiang Xu4, Xin Zhou4, Bensheng Qiu2, Hao Lei4, Bing Wu5, Yang Fan5, and Jia-Hong Gao1

1Center for MRI Research, Peking University, Beijing, China, People's Republic of, 2University of Science and Technology of China, Hefei, China, People's Republic of, 3Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China, People's Republic of, 4Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China, People's Republic of, 5GE Healthcare, MR Research China, Beijing, China, People's Republic of

In-vivo detection of neuronal current remains a challenging and promising goal in fMRI. Previous work has demonstrated its feasibility in phantom and cell culture studies, but attempts in in-vivo studies remain few and far between. As neuronal current is usually comprised of a series of oscillatory waveforms rather than being a direct current, it is most likely to be detected using oscillatory current sensitive sequences. In this study, we explored the potential of using the spin-lock oscillatory excitation (SLOE) sequence to directly detect optogenetically evoked oscillatory neuronal current in vivo for the first time.

This abstract and the presentation materials are available to members only; a login is required.

Join Here