Meeting Banner
Abstract #0282

Rapid Myelin Water Imaging in Human Cervical Spinal Cord

Emil Ljungberg1, Irene Vavasour2, Roger Tam2,3, Youngjin Yoo3, Alexander Rauscher4, David Li2, Anthony Traboulsee5, Alex MacKay1,2, and Shannon Kolind5

1Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada, 2Radiology, University of British Columbia, Vancouver, BC, Canada, 3Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada, 4Pediatrics, University of British Columbia, Vancouver, BC, Canada, 5Medicine, University of British Columbia, Vancouver, BC, Canada

Myelin water imaging can quantify myelin in the cervical cord in vivo. However, the established 3D Turbo Spin Echo (TSE) approach has a lengthy scan time. We used a 3D Gradient Spin Echo (GRASE) sequence to speed up cervical cord myelin water acquisition by a factor of three. Average GRASE and TSE myelin water estimates were similar (GRASE: 23±1.5%; TSE: 24±3%) and significantly correlated (R2=0.69, p<0.001). 3D-GRASE showed good reproducibility with an average myelin water coefficient of variation of 6%. Our findings demonstrate that cervical cord myelin water data can reliably be collected in clinical feasible scan times.

This abstract and the presentation materials are available to members only; a login is required.

Join Here