Meeting Banner
Abstract #1200

Tractography Study of Brain Asymmetries in a Genetic Mouse Model

Alexandra Petiet1,2, Gonçalo C Vilhais-Neto3,4, Daniel Garcia-Lorenzo1, Stéphane Lehéricy1,2, and Olivier Pourquié3,4,5,6,7

1Center for Neuroimaging Research, Brain and Spine Institute, Paris, France, 2UPMC/Inserm UMRS1127 / CNRS UMR7225, Paris, France, 3Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France, 4Stowers Institute for Medical Research, Kansas City, MO, United States, 5Howard Hughes Medical Institute, Kansas City, MO, United States, 6Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, MO, United States, 7Department of Genetics, Harvard Medical School and Department of Pathology, Brigham and Woman’s Hospital, Boston, MA, United States

While humans show clear preference for right hand usage (90%), normal mice show consistent right or left paw usage (50%). We used a Rere-deficient mouse model (Rere+/om) that shows clear right paw usage preference (80%) compared to wild-type (WT) mice (40%) to evaluate structural connectivity changes in the cortico-spinal tract (CST) using diffusion-based tractography. Our results showed significantly reduced and more asymmetric FA along the CST of the dominant hemisphere in the dextral mutant group compared to the WT group. These results show Rere-dependent structural connectivity changes in the brain that could be clinically relevant to human pathologies.

This abstract and the presentation materials are available to members only; a login is required.

Join Here