Meeting Banner
Abstract #1690

Zinc Nanoparticles Enhance Brain Connectivity in the Canine Olfactory Network: Evidence from an fMRI Study in Fully Unrestrained Conscious Dogs

Bhavitha Ramaiahgari1, Oleg M Pustovyy2, Paul Waggoner3, Ronald J Beyers1, John Schumacher4, Chester Wildey5, Edward Morrison2, Nouha Salibi1,6, Thomas S Denney1,7,8, Vitaly J Vodyanoy2, and Gopikrishna Deshpande1,7,8

1Dept of Electrical & Computer Engr, AU MRI research center, Auburn University, Auburn, AL, United States, 2Dept. of Anatomy, Physiology & Pharmacology, Auburn University, Auburn, AL, United States, 3Canine Detection Research Institute, Auburn University, Auburn, AL, United States, 4Dept. of Clinical Sciences, Auburn University, Auburn, AL, United States, 5MRRA Inc., Euless, TX, United States, 6MR R&D, Siemens healthcare, Malvern, PA, United States, 7Dept. of Psychology, Auburn University, Auburn, AL, United States, 8Alabama Advanced Imaging Consortium, Auburn University and University of Alabama Birmingham, Birmingham, AL, United States

There is intense interest in strategies for enhancing olfaction capabilities of dogs for various applications such as bomb detection. Prior fMRI studies showed increased neural activation when zinc nanoparticles were added to the odorants. In this study, we obtained fMRI data from awake and unrestrained dogs when they were exposed to odorants with and without zinc nanoparticles and zinc nanoparticles alone. We observed that zinc nanoparticles up-regulated directional brain connectivity in parts of the canine olfactory network. This provides a mechanistic explanation for previously reported enhancement in the odor detection capability of the dogs in the presence of zinc nanoparticles.

This abstract and the presentation materials are available to members only; a login is required.

Join Here