Meeting Banner
Abstract #2062

Magnetic ROIs enable improved tractography accuracy through oriented prior

Maxime Chamberland1,2,3, Benoit Scherrer3, Sanjay Prabhu3, Joseph Madsen3, David Fortin4, Kevin Whittingstall2,5, Maxime Descoteaux1, and Simon K Warfield3

1Computer science, Université de Sherbrooke, Sherbrooke, QC, Canada, 2Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada, 3Boston Children's Hospital, Harvard Medical School, Boston, MA, United States, 4Division of Neurosurgery and Neuro-Oncology, Université de Sherbrooke, Sherbrooke, QC, Canada, 5Department of Diagnostic Radiology, Université de Sherbrooke, Sherbrooke, QC, Canada

Streamline tractography algorithms infer connectivity by following directions which are maximally aligned at every voxel. This rule has even been the definition of the probability of connectivity, with the difference in current and next orientation being defined as uncertainty in connectivity. However, our experiments demonstrate that in regions where multiple fiber pathways interdigitate (e.g. temporal lobe), this heuristic is inadequate and does not necessarily reflect the underlying human brain architecture. Furthermore, we demonstrate that inference of connectivity can be improved by incorporating anatomical knowledge of the expected fiber orientation in regions where this information is known. We applied this heuristic through a new tractography region of interest (ROI) and demonstrate that it provides improved delineation of the expected anatomy.

This abstract and the presentation materials are available to members only; a login is required.

Join Here