Meeting Banner
Abstract #2341

Optimizing flip angles for metabolic rate estimation in hyperpolarized carbon-13 MRI

John Maidens1, Jeremy W. Gordon2, Murat Arcak1, and Peder E. Z. Larson2

1Electrical Engineering & Computer Sciences, University of California, Berkeley, Berkeley, CA, United States, 2Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States

Hyperpolarized carbon-13 MRI experiments typically aim to distinguish between healthy and diseased tissues based on the rate at which they metabolize an injected substrate. Existing approaches to determine flip angle sequences for kinetic measurements have used metrics such as signal variation and signal-to-noise ratio, but are not optimized to provide the most reliable metabolic rate estimates. Here we present a flip angle sequence that maximizes the Fisher information about the metabolic rate. We demonstrate through numerical simulation that flip angle sequences optimized using the Fisher information lead to lower variance in metabolic rate estimates than existing sequences. We then validate this optimized sequence in vivo with experiments in a prostate cancer mouse model.

This abstract and the presentation materials are available to members only; a login is required.

Join Here