Meeting Banner
Abstract #2408

Biochemical Characteristics in Amyotrophic Lateral Sclerosis Detected by 7T MR Spectroscopy

Nazem Atassi 1,2, Maosheng Xu3,4, Christina Triantafyllou5, Boris Keil 2,6, Christopher Long7, Robert Lawson 1,2, Paul Cernasov1,2, Elena Ratti1,2, Paganoni Sabrina1,2, Nouha Salibi8, Ravi Seethamraju9, Bruce Rosen2,3, Merit Cudkowicz1,2, and Eva-Maria Ratai2,3

1Neurology, Massachusetts General Hospital, Boston, MA, United States, 2A. A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States, 3Radiology, Massachusetts General Hospital, Boston, MA, United States, 4Radiology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China, People's Republic of, 5Siemens Healthcare, Erlangen, Germany, 6Massachusetts General Hospital, Boston, MA, United States, 7MIT Sloan Neuroeconomics Lab, Cambridge, MA, United States, 8Siemens Healthcare, Auburn, AL, United States, 9Siemens Healthcare, Charlestown, MA, United States

The purpose of this study was to quantify brain metabolites in Amyotrophic Lateral Sclerosis (ALS) patients using 7-Tesla MR spectroscopy and investigate how these metabolites correlate with clinical outcomes. Patients with ALS had significantly decreased N-acetylaspartate (NAA), glutamate (Glu) and GABA in the left motor cortex consistent with neuronal injury or loss. NAA/Cr and glutathione/Cr correlated with the revised ALS Functional Rating Scale. Increased pathological reflexes, a clinical marker of upper motor neuron degeneration correlated positively with myo-Inositol/Cr and choline/Cr, and negatively with NAA/Cr. 7T MRS can provide effective biomarkers in ALS patients which correlate well with clinical outcomes.

This abstract and the presentation materials are available to members only; a login is required.

Join Here