Meeting Banner
Abstract #2833

Quantifying Chemical Exchange Contributions in Mixtures Using Spin-Lock MRI

John Thomas Spear1,2 and John Gore1,2,3,4

1Physics and Astronomy, Vanderbilt University, Nashville, TN, United States, 2Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States, 3Radiology, Vanderbilt University, Nashville, TN, United States, 4Biomedical Engineering, Vanderbilt University, Nashville, TN, United States

R dispersion provides insight into the rates of molecular processes that give rise to relaxation, and a technique called Exchange Rate Contrast (ERC) can differentiate proton pools based on chemical exchange rates. Double dispersion phenomena may occur when three exchanging proton pools are present, and parametric images may be calculated in which the image intensity scales with the concentration of the exchanging pools. A theoretical equation was derived for this contrast and shown to align well with Bloch-McConnell simulations. Various applications with exogenous contrast agents present a great deal of potential for utilizing this technique in practice.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords