Meeting Banner
Abstract #3768

A simultaneous fMRI-EEG acquisition to minimize the MR gradient artifact on human auditory system

Kevin Wen-Kai Tsai1,2, Hsin-Ju Lee2, Ching-Po Lin2, Li-Wei Ko3, Wen-Jui Kuo2, Toni Auranen4, Simo Särkkä5, and Fa-Hsuan Lin6

1Aim for the Top University Project, National Taiwan Normal University, Taipei, Taiwan, 2Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan, 3Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan, 4Advanced Magnetic Imaging Centre, Low Temperature Laboratory, Aalto University, Espoo, Finland, 5Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland, 6Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan

Simultaneous fMRI-EEG acquisition provides a good spatial and temporal resolution from MRI and EEG respective to study the human brain function. However, the EEG signal is impaired due to the strong magnetic gradient switching of concurrent MR imaging. A simultaneous interleaved MR InI-EEG recording strategy is proposed to minimize the distortion of the EEG. Our results suggest that the proposed acquisition strategy can reveal similar BOLD contract activation but preserve better auditory evoked potentials than conventional EPI-EEG acquisition.

This abstract and the presentation materials are available to members only; a login is required.

Join Here