Hyperpolarization overcomes the biggest limitation of MRI: its low sensitivity, and enables metabolite mapping. Hyperpolarized 13C magnetization can be produced by transferring the spin order of parahydrogen into 13C by hydrogenation followed by a sequence of 1H and 13C pulses. However, it is possible to hyperpolarize AA’X spin systems by two pulses on 13C. Theoretical models were developed to describe the polarization transfer and significant signal increase was observed for the biomolecule succinate after spin order transfer directly in the magnet of a commercial MRI system. The experimental data is well described by theoretical calculations except for an overall scaling factor.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords