Acquisition timing and B1 calibration are two key factors that affect the quality and accuracy of hyperpolarized 13C MRI. This project developed a new approach using regional bolus tracking to trigger Bloch-Siegert B1 mapping and real-time regional RF power compensation, followed by dynamic imaging of hyperpolarized 13C metabolites. The feasibility of applying the proposed framework for in vivo hyperpolarized 13C imaging was demonstrated on healthy rats and tumor-bearing mice on a clinical 3T scanner. This proposed method was designed to improve efficient use of hyperpolarized magnetization as well as the accuracy and robustness of hyperpolarized 13C MRI.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords