The recent achievement of 13C-pyruvate polarization by side-arm para-hydrogen induced polarization (SA-PHIP) in-vitro has renewed interest in PHIP, which has been limited by a lack of biologically-relevant directly-polarizable compounds. To investigate the achievable polarization of 13C-pyruvate by SA-PHIP for in-vivo metabolic MRI, density matrix simulations of polarization transfer by magnetic field cycling (MFC) and spin-order transfer (SOT) pulse sequences were performed for target precursors. MFC-based approaches were confirmed to be suitable for polarization transfer over the long-range J-couplings present in SA-PHIP precursors. Additionally, simulated polarization levels with SOT approaches were reasonable for representative 13C-pyruvate precursors, promising for metabolic MRI.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords