Meeting Banner
Abstract #0947

Learning Nonlinear Low-Dimensional ModelsĀ for MR Spectroscopic Imaging Using Neural Networks

Yahang Li1,2, Xi Peng2, and Fan Lam1,2

1Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States, 2Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States

Low-dimensional subspace models have recently been developed for fast, high-SNR MRSI, by effectively reducing the degrees-of-freedom for the imaging problem. However, low-dimensional linear subspace models may be inadequate in capturing more complicated spectral variations across a general population. This work presents a new approach to model general spectroscopic signals, by learning a nonlinear low-dimensional representation. Specifically, we integrated the well-defined spectral fitting model and a deep autoencoder network to learn the low-dimensional manifold where the high-dimensional spectroscopic signals reside, and applied this learned model for denoising and reconstructing MRSI data. Promising results have been obtained demonstrating the potential of the proposed method.

This abstract and the presentation materials are available to members only; a login is required.

Join Here