Low-dimensional subspace models have recently been developed for fast, high-SNR MRSI, by effectively reducing the degrees-of-freedom for the imaging problem. However, low-dimensional linear subspace models may be inadequate in capturing more complicated spectral variations across a general population. This work presents a new approach to model general spectroscopic signals, by learning a nonlinear low-dimensional representation. Specifically, we integrated the well-defined spectral fitting model and a deep autoencoder network to learn the low-dimensional manifold where the high-dimensional spectroscopic signals reside, and applied this learned model for denoising and reconstructing MRSI data. Promising results have been obtained demonstrating the potential of the proposed method.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords