Geometric distortions and signal-to-noise ratios (SNR) of T2*-weighted echo-planar imaging (EPI) of the spinal cord are compared for conventional and inner-FOV acquisitions based on 2D-selective RF (2DRF) excitations. For conventional acquisitions, the required FOV increases with the in-plane object size yielding more pronounced distortions, prolonged echo times (TEs), and reduced SNR. For inner-FOV acquisitions, the FOV is small and independent of the object size yielding only minor distortions. The 2DRF pulse duration must be adapted for larger object sizes resulting in slightly prolonged TEs but overall TEs remain shorter and SNR values are larger than for conventional acquisitions.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords