Asymmetric in-plane k-space sampling of EPI can reduce the minimum achievable TE in hyperpolarized 13C with spectral-spatial radio frequency pulses, thereby reducing T2* weighting and signal-losses. Partial Fourier image reconstruction exploits the approximate Hermitian symmetry of k-space data and can be applied to asymmetric data sets to synthesize unmeasured data. Here we present the results of applying partial Fourier image reconstruction from hyperpolarized [1-13C]pyruvate scans in human brain. A quantitative evaluation of image sharpness using no-reference image quality assessment agreed with a perceived improvement in contrast and resolution.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords