Meeting Banner
Abstract #0846

Characterizing the fine microstructure of cerebellar and cerebral cortex non-invasively with metabolite diffusion-weighted MRS

Marco Palombo1, Cecile Gallea2,3, Guglielmo Genovese3,4, Stephane Lehericy2,3, and Francesca Branzoli3,4
1Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom, 2Team "Movement Investigations and Therapeutics", Brain and Spine Institute - ICM, Paris, France, 3INSERM U 1127, CNRS UMR 7225, Sorbonne University, Paris, France, 4Brain and Spine Institute - ICM, Centre for NeuroImaging Research - CENIR, Paris, France

Diffusion-weighted magnetic resonance spectroscopy (DW-MRS) performed at ultra-high b-values enables the quantification of fine cell microstructural features such as dendritic spine density. Here, we measured in-vivo the diffusion of total N-acetyl-aspartate (tNAA) and choline compounds (tCho) in the human cerebellar and cerebral cortex at 3 T, up to a b-value of 24 ms/μm2. We used biophysical modelling and numerical simulations to interpret the metabolite signal attenuation with the b-value. The diffusion of tNAA, a mostly neuronal metabolite, is compatible with a larger presence of spines and highly restricting granular cell soma in cerebellar compared to cerebral cortex.

This abstract and the presentation materials are available to 2020 meeting attendees and eLibrary customers only; a login is required.

Join Here