MRS quantification tools such as LCModel require the use of prior knowledge and can be time-consuming. Therefore, we propose an untargeted metabolomics approach to in vivo 1H-MRS using pattern recognition and machine learning to analyze spectral features. The ability of our approach to measure changes in brain glucose while blood glucose levels were increased was studied using high quality spectra and reliable data acquisition methods. Results showed similar time-course glucose signals and sensitivity to changes in glucose concentrations for both LCModel and our pattern recognition analysis. Thus, demonstrating that untargeted metabolomics techniques can be used for in vivo MRS quantification.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords