There is growing recognition of morbidity resulting from subconcussive repetitive head impact (RHI). Mechanical interactions between the skull-brain interface (e.g., transmission and tethering) contribute significantly to the response of the brain to head impact. Local cortical strain concentrations would likely reflect the nearby tethering interactions at the skull-brain interface. In this study, we have developed MR elastography (MRE)-based methods that enable in vivo visualization and quantification of 3D full-volume cortical strain in response to non-impact dynamic loading. We have found that the distribution of the cortical strain is region-dependent, constituting a possible mechanism for RHI vulnerability among individuals.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords