Meeting Banner
Abstract #0043

Brain metabolic impairment after mild repetitive traumatic brain injury can be measured by hyperpolarized [1-13C]pyruvate and [13C]urea

Caroline Guglielmetti1,2, Kai Qiao1,2, Brice Tiret1,2, Karen Krukowski1,3, Amber Nolan3,4, Susanna Rosi1,3,5,6, and Myriam M. Chaumeil1,2
1Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, CA, United States, 2Department of Radiology and Biomedical Sciences, University of California San Francisco, San Francisco, CA, United States, 3Brain and Spinal Injury Center, University of California San Francisco, San Francisco, CA, United States, 4Department of Pathology, University of California San Francisco, San Francisco, CA, United States, 5Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States, 6Weill institute for Neuroscience, University of California San Francisco, San Francisco, CA, United States

We used hyperpolarized 13C magnetic resonance spectroscopic imaging (HP 13C MRSI), T1- and T2-MRI to detect brain alterations in a mouse model of mild repetitive traumatic brain injury (rTBI). T1/T2-MRI did not detect brain damages. HP 13C MRSI detected metabolic changes in cortical areas, with decreased HP lactate/pyruvate and pyruvate dehydrogenase activity in rTBI. Interestingly, HP pyruvate and HP urea increased in rTBI, suggesting vascular and/or blood brain barrier alterations. Altogether, we demonstrated that HP 13C MRSI has potential to detect long-lasting metabolic alterations following rTBI and holds great potential for improving diagnosis and monitoring of rTBI in clinical practice.

This abstract and the presentation materials are available to members only; a login is required.

Join Here