Meeting Banner
Abstract #0676

Hyperpolarized [1-13C]pyruvate detects brain glucose metabolism and sex-specific vulnerability in glucose transporter deficient mice

Caroline Guglielmetti1,2, Huihui Li3, Lydia M. Le Page1,2, Lauren Y. Shields3, Jeffrey C. Rathmell4, Ken Nakamura3, and Myriam M. Chaumeil1,2
1Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, CA, United States, 2Department of Radiology and Biomedical Sciences, University of California San Francisco, San Francisco, CA, United States, 3Gladstone Institute of Neurological Disease, San Francisco, CA, United States, 4Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States

We used hyperpolarized 13C magnetic resonance spectroscopic imaging (HP 13C MRSI), fluorine-18 fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) imaging and T2-weighted MRI to detect brain glucose metabolism in mice harboring deletion of the glucose transporter 3 (GLUT3) in CA1 hippocampal neurons. GLUT3 deletion induced memory impairment in males and females, highlighting the importance of glucose uptake by neurons. HP [1-13C]lactate-to-pyruvate ratios and brain volumes were decreased in female GLUT3 deficient mice, but not in males, indicating sex-specific vulnerability. No changes were detected using 18F-FDG PET imaging, highlighting the potential of HP [1-13C]pyruvate to detect downstream alterations in brain glucose metabolism.

This abstract and the presentation materials are available to members only; a login is required.

Join Here