Meeting Banner
Abstract #0722

Deuterium metabolic imaging of tumor burden and response to therapy in mutant IDH gliomas in vivo

Celine Taglang1, Georgios Batsios1, Mers Tran1, Anne Marie Gillespie1, Hema Artee Luchman2, Russell O Pieper3, Sabrina M Ronen1, and Pavithra Viswanath1
1Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States, 2Cell Biology and Anatomy, University of Calgary and Hotchkiss Brain Institute, Calgary, AB, Canada, 3Neurological Surgery, University of California San Francisco, San Francisco, CA, United States

2H-magnetic resonance spectroscopy (MRS) recently emerged as a novel, non-invasive method of monitoring metabolic fluxes in high-grade glioblastomas in vivo. However, its utility for imaging low-grade gliomas and for assessing treatment response has not been examined. Here, we show that [6,6’-2H]-glucose metabolism to lactate serves to delineate tumor from contralateral normal brain in mice bearing orthotopic patient-derived low-grade glioma xenografts. Importantly, reduced lactate production from [6,6’-2H]-glucose informs on early response to therapy, at timepoints when volumetric alterations cannot be detected by anatomical imaging, pointing to the ability of [6,6’-2H]-glucose to assess pseudoprogression, which is a major challenge in glioma imaging.

This abstract and the presentation materials are available to members only; a login is required.

Join Here