In this study, we attempted to characterize brain tumors by combining quantitative parameter mapping and deep-learning-based semantic segmentation. T1, concentration of contrast media (CM), and pHe maps were calculated after the image dataset was obtained. The contrast-enhanced area was then automatically detected using a deep-learning-based semantic segmentation algorithm. The segmented mask was set as the region of interest on these calculated maps. The statistical significance of differences in brain tumors was evaluated to determine whether changes in the mean T1, CM, and pHe were malignancy-dependent.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords