Transcranial MRI-guided focused ultrasound (tcMRgFUS) is a promising technique for treating multiple diseases. It is desirable to simplify the clinical workflow of tcMRgFUS treatment planning. Previously, feasibility of leveraging deep learning to generate synthetic CT skull from ultra-short echo time (UTE) MRI has been demonstrated for tcMRgFUS planning. In this study, 3D V-Net was used for skull estimation, by taking advantage of 3D volumetric images. Furthermore, feasibility of applying pre-trained model in new dataset was studied, demonstrating the possibility of generalization across various sequences/protocols and scanners.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords