Meeting Banner
Abstract #1271

Improved spatial normalization of white matter fiber orientation distributions using T1-weighted contrast

Jose M Guerrero-Gonzalez1,2, Olivia Surgent2,3, Nagesh Adluru2,4, Steven R Kecskemeti2, Gregory R Kirk2, Douglas C Dean III1,2,5, Brittany G Travers2,6, and Andrew L Alexander1,2,7
1Medical Physics, University of Wisconsin - Madison, Madison, WI, United States, 2Waisman Center, University of Wisconsin - Madison, Madison, WI, United States, 3Neuroscience Training Program, University of Wisconsin - Madison, Madison, WI, United States, 4Radiology, University of Wisconsin - Madison, Madison, WI, United States, 5Pediatrics, University of Wisconsin - Madison, Madison, WI, United States, 6Kinesiology Occupational Therapy Program, University of Wisconsin - Madison, Madison, WI, United States, 7Psychiatry, University of Wisconsin - Madison, Madison, WI, United States

Synopsis

Fiber orientation distributions (FOD) derived from diffusion magnetic resonance imaging (dMRI) enable resolution of multiple fiber populations within a voxel. FOD-based white matter studies include voxel-based analysis, atlas-based labeling, and group average fiber tracking. These methods require spatial normalization of the FODs. This work describes an alternative approach for FOD spatial normalization based on co-registering individual dMRI to the T1-weighted (T1w) images, non-linear spatial normalization of the T1w images to a template, and applying the transformations to the FOD maps. This approach is compared to the conventional approach of directly aligning FOD maps.

This abstract and the presentation materials are available to members only; a login is required.

Join Here