Degenerative cervical myelopathy (DCM) is a degenerative disease of the spine that leads to compression and neurological dysfunction. Recovery after surgery can be impacted by hypoxia in the cord, however the magnitude of this effect is currently unknown. Chemical Exchange Saturation Transfer (CEST) can produce contrast related to tissue pH, an indicator of hypoxia, but the method works best at ultra-high fields. Performing CEST in the spinal cord is also complicated by respiratory and cardiac motion and cerebrospinal fluid flow. The purpose of this work was to optimize pH-weighted CEST imaging in the human spinal cord at 3 Tesla.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords