We developed a Fast Acquisition and Reconstruction CEST (FAR-CEST) method at 3T human scanners, based on a deep learning approach. A 10X accelerated acquisition was achieved, which under-sampled K-space using a randomized Cartesian pattern of variable density. To fully utilize the correlation among saturation offset dimension, especially to compensate for sparsely-sampled K-space edge, a 3D-Res-Unet model was trained for reconstruction. Results on healthy adult brain suggested that FAR-CEST can produce high quality saturation-weighted images and Z-spectra,but the CEST contrast slightly altered. The highly-acceleration feature of FAR-CEST has been initially validated, yet still require improvement on reconstruction accuracy.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords