The aim of this study is to adopt machine learning and deep learning methods to predict the risk of post-GKS edema for meningiomas. 595 multicenter cases were included to train and validate 38 random survival forest (RSF) and DeepSurv models. The RSF model incorporating clinical, semantic, and ADC radiomic features achieved the best performance with a C-index of 0.861 in internal validation, and 0.780 in external validation. The derived nomogram had excellent discrimination and calibration. The proposed RSF model with a nomogram represents a non-invasive and cost-effective tool to predict post-GKS edema risks, thus facilitates personalized decision-making in meningioma treatment.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords